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ABSTRACT
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quadrature points. MMLE estimation uses a numerical analysis
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distribution for item and ability parameter estimations because of
the difficulty of direct integration with a digital computer. For
integrating ability, the values of quadrature points and the weights
corresponding to each quadrature point are specified. The
Gauss-Hermite quadrature formula and R. J. Mislevy's histogram
solution (1984) have been used for numerical integration over the
ncrmal density function. It was determined that the Gauss-Hermite
quadrature formula and Mislevy's graphical solution via MMLE
estimated item and ability parameters equally when a large number of
quadrature points was specified. When a small number of quadrature
points was specified, Mislevy's histogram solution via the MMLE
approach estimated item and ability parameters more accurately than

did the Gauss-Hermite quadrature formula. Seven tables summarize the
study. (Author/SLD)
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vValidity of Using Two Numerical Analysis Techniques to
Estimate Item and Ability Parameters via MMLE: Gauss-Hermite
Quadrature formula and Mislevy's Histogram Solution.

Abstract

MMLE employs a numer;cal analysis technique to integrate
examinee's abilities over the ability distribution for item and
ability parameter esflmations because of the difficulty of direct
integration with a digital computer. For integrating'ability,
the values of quadrature polnts and the weights corresponding to
each quadrature point are specified. The Gauss-Hernite
quadrature formula and the Mislevy's histogram solution have been
used for numerical integration over the normal density function.

This study found that the Gauss-Hermite quadrature formula
and the Mislevy's graphical solution via MMLE estimated item and
ability parameters equally when the large number oi quadrature
points were specified. When the small number of quadrature
points are specified, the Mislevy's histogram solution via MMLE
approach estimated item and ablility parameters more accurately

than the Gauss-Hermite quadrature formula.



I. Introduction

There are many procedures to estimate item and ability
parameters. Birnbaum's Jjoint estimation paradigm (1968) has been
the standard procedure for the maximum likelihood estimation of
item and ability parameters, Because of the incidential and
structural problem in IJMLE, Bock and Lieberman (1970) proposed
marginal maximum likelihood estimation (MMLE) to remove the
effect of incidental parameters by integrating over the ability
distribution.

MMLE employs a numerlcal analysis technique to integrate
examinee's abilities over the ability distribution because of the
difficulty of direct integration with a digital computer. Under
the numerical analysis theory, the problem of finding the sum of
the area under the continuous curve is replaced by the simpler
problem of finding the sum of the areas of a finite number of
quadratures which approximate the area under the curve.

' The MMLE approach and a numerical analysis theory have been
implemented in the BILOG computer program (Mislevy and Bock,
1982, 1984, 1986). For integrating ability, the number of
quadrature points, the values of quadrature points, and the
weights corresponding to each quadrature point are specified.
The Gauss-Hermite quadrature formula h»s been used for numerical
inteoration over the normal density function. The table, due to
Stroud and Secret (1966), for quadrature points and welghts are

used in the MMLE approach (Bock & Altkin, 1981; Bock & Lieberman,



1970; Mislevy, 1984). The BILOG computer program does not
actually provide the quadrature points and weights yielded by the
Gauss-Hermite formula. The quadrature points and welghts
provided as the default values for normal density function in
.BILOG are based upon the graphlcal solution which is called
Mislevy's histogram solution (Mislevy & Stocking, 1989).

Seong (in press) found that increasing the number of
quadrautre point improves the accuracy of estimation for item and
ability parameter with a large data set when prior ability
distributions were matched to underlying ability distributions.
This study investigated similarity of item and ability paranmeter
estimations of using above two numerical analysis techniques via
MMLE with a large data set after changing the number of

guadrature points.
II. Theory

| An approximate integration is used when we are solving a
functional equation for an unknown function that appears in the
integrand of some integral and we are confronted with the problem
of integrating experimental data. In a numerical analysis, an

integral is approximated by a linear combination of the value of

the integrand.

b n
Ia wix)f(x)dx ::151 A(xi)f(xi). (1)

Xer KopeeXyeo X are points or absclssas usually chosen so as to



lie In the interval of lntegration. These are called the nodes
or quadrature points, A(xl), A(xz),..A(xl)... ..A(xn) are

called weights or coefficients corresponding to quadrature
points. The right side of the above equation is frequently
called a rule of approximate integration, or quadrature formula
or quadrature rule. A éuadrature formula usually occurs in
families depending upon a parameter such as the spacing between
the integrand quadrature points or the number of the these
points. With arbitrary nodes, formula (1) will be exact for all
polynomial of degree < n-1l.

The great mathematician Karl Friedrich Gauss (1866)
discovered that the accuracy of the numerical integration process

could be greatly increased for the special case w(x) = 1 by a

special placement of the nodes. The quadrature formulas that
arise through application of his theorem are called Gaussian
quadrature formulas.
Gauss-Hermite Quadrature Formula

There is a large family of numerical integrations that
confirm to following pattern of the formula (1).
For using the above formula, it is only necessary to know the
"quadrature points" Xqv Xoree¥ipee X, and "welghts" A(xl),
A(xz),.. A(xi),...A(xn). Gauss's remarkable results 1s given
below (see Cheney & Kincaid, 1985 pp 192 for details):

Let q be a polynomial of degree n such that

b .
I Q(X)X‘ dx = 0 1'—'0,1,....!’!"1 (2)
a



Let X10 XopeoMyao X be the roots of ¢. Then the formula (1)
with these xl's as nodes will be exact for all polynomials of
degree < 2n-1. With Gaussian nodes, the formula will be exact
for all polynomials of degree < 2n-1. The quadrature formulas
that arise as applications of this theorem are called Gaussian
quadrature formula. There is a different formula for each
interval (a, b) and each of n. There is also more general
Gaussian formula to glve appropriate values of integrals such as

© - 1 % ® _xz
j f(x)e dx, j £(x)(1-x?) ax, [ f(x)e dx, etc.

0 a " -=®

Over the doubly infinite intexval (-o < x < ®), a frequently

used weighing function is of the form

_aly?
wix) = e . (3)

Quadrature formula with above function is
] ® -az x2 n
wix)E(x)dx = e f(x)dx 2« £© H, £(x.) + E. (4)
~ i )

- - i=1

Hermite provided the relevant orthogonal polynomial equation
to compute the nodes when ¢ =1 or o =% (see Hildebrand, 1956, PP
277 ior detalls). Hermite's orthogonal polynomial equation is

given below:

n x2 n -x2

Hn (xi) = (-1) e (e ) =0 (5)

a(n
where n is the number of nodes (quadrature points).

The first four of the polynomials defined by Equation (5)

calculate the values of the nodes as shown bhelow:



Ho(x)=1

H2(x1)=4x2~2 Xy= & 1/V/2,
Ha(x,)=0x7-12x x = + #3/2 and 0.

These values are given in the Stroud and Secrest's (1966) Table

5. Hermite's equation to compute welght corresponding each node

is (see Hildebrand, 1956, pp 277 for details):

R oy
H = , (6)
n
[Hn+1(x1)]2 i

When there are two nodes, the equation for computing the weights

is
23 21 /T
H =
2 2
[H3 (xi)] .

The weights corresponding two nodes are + /W/2. When there are

three nodes, the weights are :/n/6 and 2/%/3. These values of

weights avre given in the Stroud and Secrest's Table 5 (1966).
From the Equation (4),

® -x2 n
e f(x)dx == ¢
-0 i=

H, £(x;) + E.
, il

The quadrature formula of a normal function is

1 ) —x2/2
e gi{x)dx =<

—
(’tZT{ “-® i

Hig(xi) + E, (7)

HtMs

1



Let x = /2 y, dx = #2 dy.

1 fo -x2/2 7T fo -y -
= I_z a(x)dx = 7= J“me g(¥2 y)dy
1 ® ~y2
- y—~ I_me g(v2 y)dy. (8)
Let ¥2:y = J(y) and h = g-J,
1 (e -x2/2 1 [ -y*
;§§ j_: g(x)dx = = J_me gli(y)ldy
1l © -yz
= - J-me h(y)dy
1 n
= = 151 Hy h(x;)
1 n
= - 151 H g(/fki)
n 1
= 151 = Hi g(/?kl) (9)
n_ -
= 151 19(x3).
1

From the akove equation, ﬁi =

Hy, and ;i = /2_xi.

The nodes of the normal function are gbtained by multiplying the
Stroud and Secrest's Table 5 values by /2, The welghts of the
normal function are obtalned by dividing the Stroud and Secrest'

Table 5 values by /r.




Mislevy's histogram solution

Under a normal distribution, the ability scale is restricted

from -4 to +4 and the ability interval is divided into (n-1)
numbers of réctangles having equal ability space. n indicated a
specified number of quadrature polnts. It produces the specified
number of quadrature points.

The normal probability density functions at each Xi0 f(xi),
are computed and then multiplied by the equal space, which is the
width of the rectangle. These are vélues of weights, A(xi). The
sum of these weights values is i. When the sum of the weights is_
not exactly equal to 1 because of rounding error. The welghts
are divided by the sum of the welghts to make that sum of the
weights equal to 1. The default values of quadrature and welghts
satisfy three conditions for numerical integration of the normal
distribution which are ZA(X;) = 1, £X;A(X;) = 0, and EX> A(X,)
= 1.

III. Method
Data

Simulated item response vectors (1,0) for 1,000 examinees
were generated by the GENIRV computer program (Baker, 1978). The
program requires an user to specify the number of items in a
test, the values of item parameters, the sample size, and the
type of underlying abllity distribution. A test of 45 items was
used in the present study because this number of items was large

enough to yleld stable results. Item parameters of the 45-items
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for generating item response vectors under the two-parameter
normal ogive ICC model were randomly chosen from within each cell
of Table 1. Thirty one ability groups were used for the normally
distributed 1,000 examinee data because these groupings and

numbers of examinees yielded a good match to the normal ability

distributions.

{Insert Table 1 about here]

Item and Ability Parameter Estimation
The generated data set was analyzed via the micro computer
version of the BILOG (PC-BILOG versicn 1.1) program (Mislevy &
Bock, 1986) specifying the number of the quadrature points, the
values, and the weights. Most of the program default values were
used except the number of quadrature points, the values of the
quadrature polnts, and weights corresponding to each quadrature
point by the Gauss-Hermite quadrature formula and the Mislevy's
histogram solution. The number of the quadrature points for this
study were 10, 20, 30, and 40.
| For ability estimation, the Bayesian expected a posterior
estimation (EAP) was chosen because no other estimator has
sma.ler mean square error ove. he populatior for which the
distribution of ablility is specified by the prior (Bock &
Mislevy, 1982; Mislevy & Stocking, 1989).
Similarity Measures
Tw. 3tatistics were used to measure a similarity of item and
ability parameter estimations of using two numerical analysis

techniques. oOne is the correlation between the parameters and
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the estimates of using the Gauss-Hermite quadrature formula and

the Mislevy's graphical solution. Another is the absolute

difference between the parameters and the estimates of using two

numerical analysis techniques.

IV. Results and Conclusions
Item Discrinination Estimates
The correl:tions and the average absolute difference for item

discrimination estimate were reported in Table 2 and Table 3.

(Insert Table 2 and Table 3 about herel

The correlations between tﬁe item discrimination parameters
and the estimates of using the Mislevy's graphical solution were
almost equal to those between the item discrimination parameters
and the estimates by using the Gauss-Hermite gquadrature formula.
The average absolute difference of the item discrimination
esﬁimates by using the Mislevy's histogram solution were sma.ler
than those by using the (fauss-Hermite quadrature formula when the
number of quadrature points were small.

Item Difficulty Estimates
The correlations and the average absolute difference for item

difficulty estimate were reported in Table 4 and Table 5.

(Insert Table 4 and Table 5 about here]

The correlations between the item difficulty parameters and
the estimates by using the Mislevy's graphical solution were
exactly equal to those between the item difficulty parameters and

the estimates by using the Gauss-Hermite guadrature formula.

10
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When the number or quadrature points was ten, the average
absolute difference for the item difficulty estimates of using
the Mislevy's histogram solution was smaller than that of using
the Gauss-Hermite quadrature formu |
Ability Estimates
The correlations anéd the average absolute difference for

ability estimate were reported in Table 6 and Table 7.

(Insert Table 6 and Table 7 about here)

When ten quadrature points were chosen, the correlation
between the ability parameters and the estimates of using the
Mislevy's histogram solution was larger than that of using the
Gauss-Hermite quadrature formula. The average absolute
difference for ability estimate of using the Mislevy's histogram
solution were smaller than those of using the Gauss-Hermite
quédrature formula when the number of quadrature points were ten
and twenty.

When the small number of quadrature points are specified. the
Misievy's histogram solution via MMLE approach estimates item and
ability parameters more accurately than the Gauss-Hermite

quadrature formula. The choice of numerical analysis technique

may not be an important consideration for item and ability

parameter estimations via MMLE when the large number of

quadrature points are chosen. When estimating item and ability
parameters via MMLE with small number of quadrature points, this
study suggesis using the Mislevy' histogram solution rather than

the Gauss-Hermite quadrature formula.

11
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Table 1

Item Parametets of 45 Items

Item difficulty (8)

-1.00 0.00] +1.00] Total
3 - .5 5 5 5 15
Item
discri. 6 - .8 5 5 5 15
(o)
9 -1.1 5 5 5 15
Total 15 15 15 45.
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Table 2

Correlations between the Item Discrimination Parameter and
the Estimates of Using the Gauss-Hermite Quadrature Formula
and the Mislevy's Histogram Solution.

Numerical Analysis Technique

Gauss-Hermite Mislevy's
10 .9E0 .981
Number of 20 .980 .981
Quadrature
Points 30 .981 . 981
40 .981 .981
Table 3

Average Absolute difference for the Item Discrimination
Estimates of Using the Gauss-Hermite Quadrature Formula and
the Mislevy's Histogram Solution.

Numer ical Analysis Technique

Gauss-Hermite Mislevy's
10 .067 .051
Number of 20 .039 .038
Quadrature
Polints 30 .038 .038
40 .038 .038
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Table 4

forrelations between the Item Difficulty Parameters and
the Estimates of Using the Gauss-Hermite Quadrature Formula
and the Mislevy's Histogram Solution.

Numerical Analysis Technique

Gauss-Hermite Mislevy's
10 .992 .992
Number of 20 .992 .992
Quadrature
Points 30 .992 .992
40 .992 .992
Table 5

Average Absolute difference for the Item Difficulty
Estimates of Using the Gauss-Hermite Quadrature Formula and
the Mislevy's Histogram Solution.

Numerical Analysis Technique

Gauss-Hermite Mislevy's
10 .101 ,086
Number of 20 .078 .078
Quadrature
Points 30 .078 .078
40 .078 .078
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Table 6

Correlations between the Item Ability Parameters and the
Estimates of Using the Gauss-Hermite Quadrature Formula and
the Mislevy's Histogram Solution.

Numerical Analysis Technique

Gauss-Hermite Mislevy's
10 .951 ' .953
Number of 20 . 957 . 957
Quadrature
Points 30 .957 . 957
40 .957 .957
Table 7

Average Absolute difference for the Ability Estimates of

Using the Gauss-Hermite Quadrature Formula and the Mislevy's
Histogram Solution.

Numerical Analysis Technique

Gauss-Hermite Mislevy's
10 .260 .248
Number of 20 232 .230
Quadrature
Points 30 .230 .230
40 .230 .230
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